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In the search for drugs against schizophrenia and depression without extrapyramidal side
effects, compounds that selectively antagonize the dopamine D3 receptor subtype are thought
to be a solution. In order to create a model with which the D3 activity can be predicted and
that can generate new ideas for future synthesis, we performed a comparative molecular field
analysis (CoMFA). In our model 30 ligands were described quantitatively in the GRID program,
and the model was optimized by selecting only the most informative variables in the GOLPE
program. We found the predictive ability of the model to increase significantly when the number
of variables was reduced from 25 110 to 784. A Q2 of 0.65 was obtained with the final model,
confirming the predictive ability of the model. By studying the PLS coefficients in informative
3D contour plots, ideas for the synthesis of new compounds can be generated.

Introduction

The dopamine D3 receptor is characterized by its
selective expression in mesolimbic dopaminergic projec-
tion areas of the rat and human brains and its high
affinity for antipsychotic drugs, suggesting a role of its
receptor in the control of locomotion and motivation, as
well as in the pathogenesis of disorders such as drug
abuse and schizophrenia.1 Existing drugs against schizo-
phrenia cause major movement disorders called extra-
pyramidal syndrome (EPS), proposed to be caused by
blockade of D2 receptors in the striatum. The 30
ligands2 included in this study were synthesized with
the aim to achieve ligands that selectively could an-
tagonize the D3 receptor and thereby also avoid the EPS.
The ligands belong to two different classes, benzamides
and naphthamides, both having an arylpiperazine tail
connected to the amide nitrogen. We wanted to create
a model, including those ligands, able to predict the
activities of compounds not yet synthesized and that
could serve as a help in the design of new compounds.
Traditionally, SYBYL/CoMFA3,4 (comparative molecular
field analysis) is the method used to create this kind of
models, but there are other 3D QSAR (quantitative

structure-activity relationship) methods available5,6.
We decided to use the GRID program6 to generate
molecular descriptors and the GOLPE program5 for the
multivariate regression analyses.

Theory and Methods
Computer Hardware. All calculations presented were

carried out on a R4600 Indy Silicon Graphics workstation.
Molecular Descriptors Generated in the GRID Pro-

gram. In both SYBYL/CoMFA4 and GRID,6 a grid, big enough
to enclose all the aligned ligands in all directions, is created.
Subsequently, interaction energies between a probe atom and
the target molecule are calculated, in each grid point. How-
ever, SYBYL/CoMFA and GRID use different force fields and
different types of probe atoms, and as a consequence, the
results will differ. Interactions recognized and accounted for
in the GRID force field are steric, electrostatic, and hydrogen-
bonding interactions represented by the Lennard-Jones en-
ergy (ESTE), the Coloumbic energy (EEL), and a hydrogen-
bonding (EHB) term, respectively. In contrast to SYBYL/
CoMFA, where all interaction energies are considered sep-
arately, the sum of all the different interaction energies
(eq 1) is calculated in the GRID program. An attractive
interaction yields a negative field (Exyz), while repulsive
interactions are positive.

Different probes reflect different types of interactions and may
* Author to whom correspondence should be addressed.
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Exyz ) EEL + ESTE + EHB (1)
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selectively be included to mimic specific interactions between
the ligand and the receptor. Often more than one probe is
necessary for a complete description of the different interaction
types.
Data Pretreatment. The outcome of a CoMFA is depend-

ent on the pretreatment of the initial quantitative descriptors,7
that is, mathematical manipulations performed in order to
minimize the influence of insignificant variation, on the final
model. GOLPE offers a number of different options for
pretreatment and may be used in combinations, or not at all,
depending on the heritage of the data we are working with.
A probe too close to the target molecule may produce

unrealistic high-positive (repulsive) interactions that can
influence the PLS solution detrimentally. Therefore, it is wise
to introduce a positive maximum cutoff value. The negative
interaction values (attractions) decline smoothly as the dis-
tance between the probe and the target molecule increases,
and a cutoff value for negative values is not necessary.
Interaction values in grid points in the periphery of the grid

tend to be low, where variations are more similar to noise than
true reflections of the variations in the field. The zeroing
option corrects for this by replacing absolute values, lower than
a specified cutoff value, with zero.
Grid points with a too low standard deviation may be

assumed insignificant and consequently be omitted from the
analysis. This option is identical with the “MINIMUM-
_SIGMA” option in SYBYL/CoMFA.
In some grid points it is possible that all ligands but one

have identical interaction values (e.g., maximum cutoff), and
consequently, PLS adjusts its solution for this single variable.5
These types of variables, called 2-level variables, may produce
spurious PLS solutions and can optionally be omitted with a
more stable PLS model as a result. Similarly, also 3- and
4-level variables can be omitted.
Finally, traditional autoscaling is also an option, but for data

of the GRID type a more suitable pretreatment is the block-
scaling option. In autoscaling, the sum of squares within each
variable is equalized or, more simply, the standard deviation
of each variable is normalized. In block-scaling, the sum of
squares within each grid (i.e., interaction values from each
probe) is normalized. This is identical with the “CoMFA_std”
scaling option in SYBYL/CoMFA.
Statistical Tools. In order to compare the performance

of the different models, multivariate tools are needed. In 3D
QSAR data, severe variance between variables disqualifies
multiple-linear regression (MLR)8 as the regression method,
and another method is needed. PLS (partial least squares)8,9
is the multivariate regression method implemented in most
QSAR software packages,3 which is a least-squares regression
method working not on the original variables but instead on
underlying latent variables. Covariance in the data reduces
the number of significant latent variables and thereby also
the complexity of the model. A more detailed description of
the PLS algorithm is presented by Geladi et al.8
The multivariate analogue to the univariate correlation

coefficient (r2) is the fitted R2 calculated as in eq 2, used to
evaluate whether the data are correlated or not.

The R2 explains the fraction of the total variation, in y,
accounted for by the model, and consequently, a model with
perfect correlated data has a R2 of 1.
In 3D QSAR, where highly predicted models are desired,

cross-validation10 is used as an internal measure of the
predictive ability. In cross-validation, a model is calculated
with a group of objects omitted subsequently followed by
prediction of the omitted objects, and the procedure is repeated
until all objects have been omitted once. A model with low
prediction errors will have a Q2 (eq 3) close to 1, while a model
with negative Q2 will predict no better than random.

Q2 is frequently used in 3D QSAR, and recently also the SDEP
(standard deviation error of predictions, eq 4) was suggested.11
The SDEP has the advantage of having the same unity as the
dependent variable (y) and, according to the authors, is
therefore more informative than the Q2.

D-Optimal Preselection of Variables. D-Optimal12,13
preselection of variables and variable selection guided by a
fractional factorial design (FFD) form the basis of the GOLPE
algorithm (generating optimal linear PLS estimations).14

The data generated in GRID contains a large number of
variables, and still, after pretreatment, only a fraction of them
contains information correlated with the biological activity (10-
log Ki). In GOLPE, only the most informative variables are
selected by a D-optimal preselection from an initial PLS model.
(The dimensionality of the PLS model is determined by cross-
validation.10) Roughly speaking, variables are selected to span
the multidimensional weight space, in the best way possible.
The selection procedure is iterative, and after each selection
a new PLS model is calculated including only the selected
variables. The selection procedure is repeated until the fitted
R2 starts to decrease. Baroni et al.14 suggest not more than
50% of the variables should be omitted each time. During the
preparation of this work, we learned that the D-optimal
preselection procedure may be used to reduce the number of
variables from, roughly, tens of thousands to thousands of
variables before the fitted R2 starts to decrease.
Variable Selection following a Fractional Factorial

Design (FFD) Procedure. At this point, most of the
redundant variables have been eliminated, and the predict-
ability of the model, in terms of predictedQ2, can be optimized.
The influence of each variable on the predictive ability is
estimated by a number of cross-validation experiments where
variables are included and excluded, alternately. A design
matrix,14 with a number of columns equal to the number of
variables left after the D-optimal preselection and with 2 times
as many rows, is created. Each row represents an experiment
were “plus” and “minus” signs mean include and exclude a
variable in the experiment, respectively. Obviously, different
combinations of variables generate different SDEP, and by
means of Yates’ algorithm,15 the influence of each individual
variable on the SDEP can be calculated. In order to separate
a variable that significantly improves predictability from one
that does not, a number of variables with random numbers
are introduced in the design matrix. A random variable has,
by definition, no influence on the predictability of the model.
Therefore, the estimated average effect of the random variables
may serve as a limit, on the basis of a Student’s t-test at the
95% confidence level, for the estimated effects of the true
variables. A true variable with a significantly higher esti-
mated effect than the limit will be excluded. A true variable
with a significantly lower estimated effect than the limit will
be kept fixed, and a true variable with an estimated effect
within the limit interval may optionally be fixed or excluded.
The coordinates of the ligands included in this work are

available from the author upon request (e-mail: j.nilsson@
farm.rug.nl).

Results and Discussion

Molecular Modeling. Initially, 30 molecules (Tables
1-3) were built and minimized using the MM2* force
field implemented in the molecular modeling package
Macromodel 4.5.16 In order to simplify the calculations,
two general assumptions concerning the conformations
were made. First, the benzamide part of the ligands
was fixed in a planar conformation (τ(5-6-7-8) in
Figure 1 set to 0°), as supported from several X-ray
structures present in the Cambridge Crystallographic
Structural Database (CSD). Additionally, the oxygen
from the o-methoxy (Figure 1, atom 5) stabilizes the

R2 ) 1 - ∑
i

(yicalc - yiobs)
2/∑

i

(yiobs - ymean)
2 (2)

Q2 ) 1 - ∑
i

(yipred - yiobs)
2/∑

i

(yiobs - ymean)
2 (3)

SDEP ) [∑
i

(yipred - yiobs)
2/N]1/2 (4)
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conjugated benzamide part by forming an internal
hydrogen bond with the amide N-H.
The second assumption concerns the arylpiperazine

tail, the conformation of which we also fixed with
support from X-ray structures. The piperazine ring in
a chair conformation was present in all arylpiperazines
found in CSD, suggesting that this conformation is
energetically preferable, as compared to the boat con-
formation. A conformational search experiment in
SYBYL (Tripos force field17) confirmed this, by finding
the chair conformation in all low-energy conformations
(not presented). The torsional angle between the pip-
erazine ring and the phenyl ring (Figure 1, τ(1-2-3-
4)), however, was more flexible. An unsubstituted

phenyl ring can, according to X-ray structures, be found
in almost any angle, while an ortho-substituted phenyl
ring is more or less always somewhat twisted. Due to
these findings we chose to fix the τ(1-2-3-4) between
the piperazine ring and the phenyl ring at 84°. As a
consequence, the overlap of the phenyl rings from
compound 30 (Table 3) and the rest of the ligands was
improved.
The conformational space, of all ligands, was explored

by a conformational search procedure using the Monte
Carlo procedure, as implemented in Macromodel while
keeping the above-discussed torsional angles fixed. New
conformations were randomly generated, and their
energy was minimized and subsequently compared with
previously saved conformations. If a new conformation
was lower in energy than the present “global minimum
energy conformation”, the new conformation replaced
the old one. If a new conformation was identical with
the global minimum energy conformation, a variable
was increased by one, and when this conformation was
found a sufficient number of times, the conformational
search was considered converged. All conformations
within 5 kcal/mol from the global minimum energy

Table 1. Benzamide Ligands and Their Experimental and
Calculated Affinities for the Dopamine D3 Receptor Subtype

10log Ki (nM)

compd R1 R2 R3 R4 R5 R6 expta calcd

1 -OMe -Br 2.5 2.6
2 -OMe -Br -OH 2.6 2.8
3 -OMe -Et -Cl -OH 3.2 3.1
4 -OMe -Cl -Cl -OH 3.0 2.9
5 -OMe -Cl -Cl -OH -Cl -Cl 2.7 2.7
a[3H]Spiperone, human DA D3 receptors expressed in CHO K1

cells; Ki values were obtained from four to six concentrations, run
in triplicate, by a nonlinear regression analysis.

Table 2. Naphthamide Ligands and Their Experimental and
Calculated Affinities for the Dopamine D3 Receptor Subtype

10log Ki (nM)

compd R1 R2 R3 R4 R5 R6 expta calcd

6 -OMe -Br 1.4 1.9
7 -OMe -Cl 1.7 1.9
8 -OEt -Br 2.4 2.0
9 -OMe -Br -OMe 1.9 1.7
10 -OEt -Br -OMe 1.9 1.8
11 -Br -OMe 2.5 2.3
12 -OMe -Br -CF3 2.4 2.2
13 -OEt -Br -CF3 2.1 2.3
14 -OMe -Br -CN 1.7 1.5
15 -OMe -Br -Me 1.8 1.6
16 -OMe -Br -Me 2.5 2.2
17 -OMe -Br -Me 2.4 2.3
18 -OMe -Br -Me -Me 1.7 1.7
19 -OMe -Br -Cl 1.6 1.5
20 -OMe -Br -Cl 1.6 2.0
21 -OMe -Br -Cl -Cl 2.3 2.4
22 -OMe -Br -Cl -Cl 2.0 2.0
23 -OMe -Cl -Cl -Cl 1.6 1.7
24 -OMe -Br -F -F 2.3 2.0
25 -OMe -Br -Me -Cl 1.7 1.7

a[3H]Spiperone, human DA D3 receptors expressed in CHO K1
cells; Ki values were obtained from four to six concentrations, run
in triplicate, by a nonlinear regression analysis.

Table 3. Additional Naphthamide Ligands and Their
Experimental and Calculated Affinities for the Dopamine D3
Receptor Subtype

(nM)

a

(nM)

a [3H]Spiperone, human DA D3 receptors expressed in CHO K1
cells; Ki values were obtained from four to six concentrations, run
in triplicate, by a nonlinear regression analysis.

Figure 1. Benzamide-phenylpiperazine skeleton. In order
to simplify the modeling procedure, the highlighted torsional
angles τ(1-2-3-4) and τ(5-6-7-8) were fixed at 84° and 0°,
respectively, with support from X-ray structures.

GRID/GOLPE Study on Benzamides and Naphthamides Journal of Medicinal Chemistry, 1997, Vol. 40, No. 6 835



conformation were saved and considered as even likely
to be the conformation interacting with the receptor.
The most crucial step when preparing a CoMFA study

is the alignment of the ligands. Since the homology
between the ligands in the model is very high, the main
goal with the alignment procedure was to achieve
maximum overlap between the ligands. The pharma-
cophore, below, was chosen with this in mind. The
midpoint of the aromatic benzamide ring, amide O,
amide N-H, and a dummy atom in the direction of the
lone pair of electrons from the basic nitrogen of the
arylpiperazine part were identified as possible interac-
tion points with the receptor. Dummy vectors and
midpoints were added to each conformation from all
ligands using vecadd, a subprogram in the pharma-
cophoric program Apollo.18 Due to lack of a rigid
template, the global minimum energy conformation
from ligand 1 (Table 1) was chosen as template, and
subsequently, all the other ligands were fitted on this
template, on the pharmacophoric points identified above,
using Apollo. Each fitting procedure considered all
conformations within 5 kcal/mol from the global mini-
mum as determined by the conformational search
procedure. The output was a number of fits ranked in
decreasing order of rms (root mean square). Optionally,
the energy of a fitted conformation can be selected to
affect the ranking, and consequently, the lower the
energy of a fitting conformation the higher the rank of
the fit becomes. The highest ranked conformation, from
each ligand, was included in the final model. The
selected ligands were converted into the Tripos mol2
format using the file-converting program Babel.19
Receptor Binding. The ligands’ in vitro affinity for

the human dopamine D3 receptor subtype was the
dependent variable considered in this study. In the
antagonist binding study, the affinity of the compounds
was determined by their ability to displace [3H]spiper-
one from the dopamine D3 receptor.20 Receptor binding
affinities are mostly expressed as Ki (nM) values cal-
culated from IC50 values as described by Cheng and
Prusoff.21 In order to get a more homogenous distribu-
tion of the dependent variable, we used the 10log Ki and,
as a consequence, improved the result of the regression
analyses.
Probe Selection. The grid created in GRID enclosed

all the aligned ligands with 4 Å with a resolution of 1 Å
in all directions. Consequently, the grid consisted of
8370 grid points, and interactions between all eight
probes (Table 4) and all 30 ligands were calculated in
each grid point, yielding a 240 × 8370 matrix. Subse-
quently, a principal component analysis (PCA)5,8,22 was
performed, where the first two components were suf-
ficient to separate and identify clusters of ligands from
the different probes. It can be concluded in the score
plot (Figure 2) from the first two components that the
CA+2, the C3, and the OH2 probes contained the most
different information, and these were therefore selected.
Interestingly, the O1, the OH, and the OH2 probes were

not possible to separate in the score plot, indicating that
no extra information would be added to the model if
more than one of them were included. Therefore, only
the OH2 probe was selected.
Hydrogen bonding is one of the important interactions

in the ligand-receptor interaction.6,23 Figure 3a repre-
sents the OH2 interaction energies contoured at the
-2.6 kcal/mol level, from the template molecule 1. It
is obvious that hydrogen-bonding possibilities are present
around the amide group and both of the nitrogens from
the piperazine moiety. From this figure we also con-
cluded that the OH2 probe is capable of reflecting the
hydrogen-bonding properties of the ligands.
The CA+2 probe mimics the electrostatic interactions,

and in Figure 3b we clearly see that real electrostatic
fields are generated around the benzamide part of the
template molecule 1 on the -3 kcal/mol level. Finally,
the field generated by the C3 probe (Figure 3c) on the
0.02 kcal/mol level indicates the smallest distance a
noncharged molecule may approach the template with-
out causing repulsive interactions. The energy cutoffs,

Table 4. Description of the Eight Different Probes from Grida

probe description probe description

H hydrogen atom OH OH with acidic H
C3 sp3 C atom OH2 water
O:: sp2 O in CdO NA+ sodium cation
O1 sp3 O in O-H CA+1 calcium cation
a The three selected probes are marked in bold face.

Figure 2. Plot of the scores from the first two components
explaining 64% of the variation in the data matrix. Six obvious
clusters can be recognized, and the three most different probes
(C3, OH2, and CA+2) were selected for further modeling.

Figure 3. Contour maps of the actual OH2, CA+2, and C3
fields from molecule 1 on the -2.6, -3.0, and 0.02 kcal/mol
level, respectively: (a and b) regions where hydrogen bonds
are favorable and where the CA+2 probe produces an attrac-
tive field with the molecule, respectively; (c) the C3 probe
produces a repulsive field inside the region.
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used above, have no relative relevance but were chosen
in order to clearly describe the different fields.
In the final model each ligand was represented by its

interactions with the three selected probes, unfolded to
form a row, leaving a final 30 × 25110 matrix (Figure
4). Worth mentioning is that the standard deviation
in grid points close to substituent groups present in all
ligands is very low (Figure 5). For instance, the strong
hydrogen-bonding field present around the amide part
of the template molecule 1 in Figure 3a is present in
all ligands, and consequently, the standard deviation
in this region becomes low as can also be seen in Figure
5a. PLS will focus on variables (grid points) with high
standard deviations, and it may therefore turn out that
important areas, as the amide part, get a too low weight
in the final PLS solution. Therefore, it is important to
study the individual fields from the ligands so that these
interaction areas are not neglected or forgotten.
Variable Pretreatment. As explained earlier,

GOLPE offers a lot of different pretreatment options and
should be applied to best suit the data in question. Our
data consist of 25 110 variables generated in GRID,
8370 from each of the three probes OH2, C3, and CA+2,
respectively. The positive maximum cutoff was set to
5 kcal/mol already during the generation of the data in
GRID. In order to correct for round off errors,5 GOLPE
automatically rejects columns (variables) having a total
sum of squares (SS) lower than 10-7 .

Absolute values lower than 0.01 kcal/mol were set to
zero, and as a consequence another 2000 variables were
omitted from further modeling due to a too low variation
(SS < 10-7). By introducing a lower limit for the
standard deviation of the columns, the number of
variables may be reduced significantly and render the
absolute value cutoff almost useless.14 We considered
this action as a variable selection method in itself and
chose not to utilize this option, and instead we put our
trust in the GOLPE variable selection methodology.
Further, all 2-, 3-, and 4-level variables present were

removed followed by a block-scaling procedure, as
described in the theory part. The pretreatment proce-
dure reduced the actual number of variables from
25 110 to 19 180, without any real variable selection.
D-Optimal Variable Preselection. The most in-

formative variables are the ones spanning the space
defined by the weight vectors as broadly as possible,
under the constraint that a sufficient number of com-
ponents are considered. If too few components are
considered, information may be lost due to the fact that
significant variables may not have been selected. The
opposite is valid if too many components are considered,
e.g., variables not correlated with the biological activity
may be selected and introduce random variation in the
model. Cross-validation24 is the most commonly used
method for determination of the proper dimensionality
of a 3D QSAR model. However, at this early stage of
modeling we are not interested in predictability but
want to make sure a sufficient number of components
is considered. A leave-one-out cross-validation experi-
ment (not presented) gave the highest Q2 (0.45) after
two components (Table 5), and we chose to perform the
D-optimal preselection procedure with three compo-

Figure 4. Each ligand is represented by three grids, one from
each probe, and in order to perform multivariate analyses the
grids were unfolded to form a row. The total data set, including
unfolded interaction values from all ligands, was collected in
a 30 × 25110 matrix.

Figure 5. Contour maps of the standard deviations, all 30 compounds considered, from the OH2 (a), CA+2 (b),and C3 (c) probes.
Only standard deviations higher than 2 are shown for clarity.

Table 5. Impact of Pretreatment, D-Optimal Variable
Preselection, and FFD Variable Selection on the Fitted R2 and
the Predicted Q2 (Cross-validation leave-one-out)

no. of
var

no. of
compda R2 Q2

after pretreatment 19180 2 0.76 0.45
after D-opt selection 1192 3 0.85 0.49
after FFDb selection 784 2 0.80 0.65
a The number of components determined with leave-one-out

cross-validation. b After the fractional factorial design selection.
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nents, assuming three were enough to capture all the
significant information hidden in the data.
Each time 50% of the variables were selected. Each

selection was preceded by calculation of a new PLS
model including only the last selected variables. The
selection procedure was repeated four times before the
R2 started to decrease, with a reduction of the number
of variables from 19 180, 9543, 4771, 2385, to 1192,
respectively.
Variable Selection. The matrix containing only the

1192 variables left after the D-optimal preselection
procedure was used as input for the final step in
GOLPE. A design matrix with 4096 numbers of experi-
ments (rows) and 299 numbers of dummy variables
(theory part) was created, and each experiment was
validated with cross-validation (five random groups
repeated 20 times). The fractional factorial design
procedure resulted in 313 and 408 variables with
significant positive and significant negative effects on
the predictability, respectively. Accordingly, 408 vari-
ables were omitted and 313 maintained together with
471 variables with nonsignificant effects on the predic-
tivity, leaving 784 variables for the final model. Vari-
ables from a 3D QSAR study differ from classic chemo-
metric variables in the sense that each variable
represents a definite spatial coordinate in the grid.
Therefore, it is also interesting to see where the selected
variables are situated in the different fields. In Figure
6 the variables after pretreatment are compared with
what remained after variable selection in the CA+2
field. Similar plots can be made for all fields.
Since we did not use an external test set, the final

model was validated with cross-validation in three
different ways (Table 6): first, with the leave-one-out
procedure followed by leave-two-out, and finally, groups
of five were left out and repeated 20 times.22 The last

validation experiment is a mixture between cross-
validation and boot-strapping in the sense that each
cross-validation experiment was repeated a number of
times, as in boot-strapping, and the objects were in-
cluded only once, as in cross-validation.
Two components were sufficient (R2 ) 0.80) to explain

most of the variation in 10log Ki, and the correlation
between the experimental 10log Ki and the calculated
10log Ki is plotted in Figure 7a. The GOLPE variable
selection procedure has indeed improved the predict-
ability of the model by increasing the cross-validated
Q2 from 0.45 to 0.65 (Table 5). AQ2 of 0.65 is considered
a good correlation between the experimental 10log Ki and
the predicted 10log Ki as plotted in Figure 7b. In order
to increase the interpretability of the PLS model, the
weighted PLS coefficients from the second component

Figure 6. Actual field from the CA+2 probe where the value
in each grid point is proportional to the size of the cross. The
field from compound 1 is pictured (a) before pretreatment and
(b) after pretreatment and variable selection.

Table 6. Different Cross-Validation Experiments with the
Final Modela

experiment no. of compda Q2

leave-one-out 2 0.65
leave-two-out 2 0.65
five random groups 2 0.63

a For a more detailed description over the different experiments,
refer to the text. b The number of components with maximum Q2.

Figure 7. (a) Experimental 10log Ki versus the calculated
10log Ki from the second component in the final PLS model.
(b)Experimental 10log Ki versus the predicted 10log Ki after
leave-one-out cross-validation and two components.
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were plotted as contour plots connecting grid points with
similar values (Figures 8). The negative and positive
coefficient fields are blue and red, respectively. In order
to simplify the interpretation of the figures, the follow-
ing PLS equation (eq 5) (mean-centered model) is of good
help. The bj and the Xj are the PLS coefficients and
the actual fields in each specific grid point (j), respec-
tively. The bj values are the coefficients plotted in
Figure 8.

In the design of new ligands the effects on the
different fields in the regions where new substituents
are placed are of importance. For instance, a substitu-
ent able to form hydrogen bonds will produce a negative
OH2 field and must be placed in regions with positive
PLS coefficients (red), in order to improve binding
(decrease 10log Ki). The same reasoning is valid for all
fields (Figure 8).
In the position para to the amide group of the

benzamide moiety, there is space for substituents
(Figure 8b, arrow I) unable to form hydrogen bonds
(Figure 8a, arrow II) and which produce repulsive
interactions with the CA+2 probe (Figure 8c, arrow III).
This is the case with the additional phenyl ring present
in the naphthamide ligands, which in general have
lower Ki values than the benzamide ligands. The
electrostatic field around the phenyl ring is negative
above and under the ring, but the positive field close to
the hydrogens appears to affect the 10log Ki the most.
In one of the ortho positions (Figure 8b, arrow IV) a

methoxy group is necessary in order to make an internal
hydrogen bond interaction possible and fix the benza-
mide and the naphthamide moieties in a planar con-
formation. Accordingly, it can also be concluded from

the model that there is no room for substituents (Figure
8b, arrow V) in the second ortho position.
The phenyl ring in the phenylpiperazine tail may not

be substituted in the para position (Figure 8b, arrow
VI) due to steric reasons; however, an attractive inter-
action with the CA+2 probe (Figure 8c, arrow VII)
promotes binding. Therefore, a small substituent with
a negative electrostatic potential and with the ability
to form hydrogen bonds25 (Figure 8a, arrow VIII), like
a fluorine atom, could be appropriate. The ortho posi-
tion on the phenylpiperazine phenyl (Figure 8b, arrow
IX) may very well be substituted, but substituents able
to form hydrogen bonds will not improve binding (Figure
8a, arrow X).
Additionally, an unsubstituted phenylpiperazine moi-

ety seems to be less potent than a substituted one, and
a speculative explanation therefore could be that an
unsubstituted ligand in solution more often has a planar
phenylpiperazine tail than what could be expected from
X-ray structures. This, in turn, could sterically hinder
the ligand to interact with the receptor where a more
twisted conformation may be preferable, which always
is the most likely conformation on an ortho-substituted
ligand.
As explained in the theoretical, the hydrogen-bonding

properties of the amide part and the basic nitrogen of
the arylpiperazine tail are of significance and should
definitely be taken into account if one, for instance,
wishes to prepare a minireceptor model26 with this
study as a reference.

Conclusions

We have obtained a 3D QSAR model from a series of
30 compounds. The ligands were described quantita-
tively with GRID parameters, and the model was
optimized by selecting only the most informative vari-

Figure 8. Contour maps of the PLS coefficients after the second component: (a) from the OH2 probe, (b) from the C3 probe, and
(c) from the CA+2 probe. Only coefficients higher than |0.0005| are shown for clarity.

10log Ki ) b1 × X1 + b2 × X2 + ... + bn × Xn (5)
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ables with the GOLPE algorithm, e.g., reduction of the
number of variables from 25 110 to 784. As the number
of variables was reduced, the predictability (Q2) of the
model increased, indicating the necessity of a thorough
variable selection procedure, also found by others.7,27
The final model had a Q2 of 0.65, which can be
considered sufficient for a 3D QSAR model. We also
stress the importance of not focusing only on the Q2

when validating a 3D QSAR model but also studying
the grid plots of the PLS coefficients in combination with
the actual field plots. This is necessary in order to find
out whether the model makes sense or not. It seems
as if we have obtained a reasonable model, both regard-
ing the predictability (Q2) and the graphic reliability
(grid plot).
This model has been validated only internally, but in

future work we intend to investigate the predictive
ability also externally (test set) and with other regres-
sion methods.28 Recently, Bro et al.29 published the
multiway PLS (N-PLS) algorithm, and by applying this
regression method on 3D QSAR data, improvements in
the interpretation and the predictability are expected.28
Additionally, the N-PLS algorithm can also be used as
an alternative variable selection method with a signifi-
cant reduction in computer time as a result.
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